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Achieving the Impossible:  
Unlimited Application Scalability 

INTRODUCTION  The most common challenge 
organizations face when it comes to 
achieving scalability isn’t the cost of 

scalability itself but the difficulty of 
predicting that cost once applications 

grow beyond a certain threshold. 

For applications that need to scale to stratospheric levels, the prospect of 
maintaining 100 percent application availability while simultaneously growing a 
system to handle an ever-increasing load is very daunting. It becomes almost 
impossible when you add the business requirement of keeping the cost of 
incremental capacity constant.  

The most common challenge organizations face when it comes to achieving 
scalability isn’t the cost of scalability itself but the difficulty of predicting that cost 
once applications grow beyond a certain threshold. Organizations require not only 
application scalability but also the predictability of application scalability, in terms of 
both cost and effort.  

For modern applications, particularly those built for the Java platform, there are 
proven approaches and solutions that can help an organization achieve predictable, 
scalable performance for their applications. And although these approaches may be 
most valuable for extreme-scale applications, they can save time and money in 
almost any server-based application.  

This paper focuses on one specific approach—the use of clustered caching to 
provide applications with significantly higher throughput and lower latency for data 
operations while retaining the appropriate levels of data quality that the applications 
require. 

DEFINING SCALABLE PERFORMANCE  
It is important to start by understanding the problem. The following are some real-
world examples:  

• An application service provider (ASP) deployed an instance of its Java 2, 
Enterprise Edition (J2EE) application in a cluster for a large customer. 
Switching from the single-server environment to a dual-server environment 
made the overall application throughput drop significantly.  

• At peak load, an internal Web-based human resources system would grind to 
a halt, because its dedicated 32-CPU database became saturated. Even worse, 
the application was serving mostly static content.  
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• A successful application service provider (ASP) had to stop signing up new 
customers, because, as the company grew, the incremental cost of adding 
customers increased until it was losing money every time it added a new one. 
Its market success would have meant bankruptcy. 

• Although it provided near-instant response times in development and testing, 
a data-intensive mutual fund analysis application was averaging more than 15 
seconds per page in production, due primarily to the database load caused by 
the number of concurrent application users. 

In each of these cases, during application development, the development team had 
deemed that the applications worked correctly. Response times appeared to be well 
within acceptable bounds. It wasn’t until production load was applied that the 
problems were realized. This is the difference between performance and scalable 
performance.  

Performance refers to an application’s ability to achieve a response within a certain 
period of time. This is called a wall clock measurement. Performance, which is 
quite simply the inverse of latency (the time delay between when data is requested 
and when it is received), is important because it reflects the responsiveness an end 
user will experience when using the application.  

Scalable performance means that response times for an application are within 
defined tolerances for normal use and that they remain within those tolerances up 
to the expected peak user load. It also requires a clear understanding of the 
resources that would be necessary to support additional load without exceeding 
those tolerances. Scalable performance is not just about performance; it is also 
about maintaining acceptable performance under load. Scalable performance is not 
focused on making an application faster. Rather, it ensures that application 
performance does not degrade below defined boundaries as the application load 
increases. It defines how resources must grow to ensure acceptable performance, 
and it provides the basis for predicting with certainty which specific additional 
resources will be required to handle the load.  

Scalable performance means that 
response times for an application are 

within defined tolerances for normal use 
and that they remain within those 

tolerances up to the expected peak user 
load. 

If performance is about latency, such as how long it takes to respond to a hypertext 
transfer protocol (HTTP) request, then scalable performance is about throughput, 
such as how many HTTP requests an application can process per second. 

PREDICTING SCALABLE PERFORMANCE  
Organizations don’t just require application scalability; they also require the 
predictability of application scalability. To predict how an application will behave 
under increasing load, it is important to understand the factors that affect scalable 
performance as load is increased.  

The ultimate goal in predictability is to be able to understand the resource cost 
represented by the average user and to drive all of the other factors as close to zero 
as possible. In other words, if you quantify the resource utilization of each user, you 
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might be able to predict the amount of resources that would be necessary to 
support any given number of users.  

The first side effect that makes such prediction by multiplication impossible is 
concurrency—the effect user actions have on each other. The side effect of 
concurrency is most obvious when multiple concurrent operations work with 
shared resources. There are many types of shared resources, including database 
constructs such as summary tables (tables that are automatically updated and that, 
by their nature, tend to have higher levels of contention) and application constructs 
such as synchronized methods on singleton objects. 

The side effect of concurrency is most 
obvious when multiple concurrent 

operations work with shared resources. 

Concurrency issues can degrade the ability to achieve scalable performance. In 
many applications, the concurrency issues result from a well-intentioned attempt to 
provide an absolutely correct answer in a situation that does not benefit from one. 
For example, inventory systems in online shopping applications do not benefit 
from being real-time and exact for two reasons: First, the quantity of items in 
inventory that would benefit from being absolutely correct is going to be the same 
quantity that will change faster than the user can respond. Second, and more 
important, any effort to maintain a real-time quantity for display purposes will be 
wasted, in view of the amount of time it takes the HTTP response to be 
communicated and presented to the end user.  

The second side effect that makes scalable performance difficult to predict is the 
desire to make the various operations within an application flow through a similar 
series of steps. Quite often this means that every HTTP request is going to be load-
balanced across a stateless farm of Web servers and routed to its sticky-designated 
J2EE application server for processing. The designated application server sends 
every request through the same series of processing steps, including a front 
controller, a request handler, a view generator, and so on. Each of these, in turn, 
may request data from the application’s domain model, which itself will likely turn 
to the database for answers.  

Although this type of generic application architecture may be easy to assemble by 
use of IDE wizards and a modern Web framework, applications that take this 
approach exhibit a high degree of intratier communication complexity. This means 
that each hop from one server to the next and back again adds to a complexity 
factor that directly impairs scalable performance.  

More important, the cost of each tier in the application tends to increase 
dramatically. Consider this: 

• In the first tier—the Web tier—the cost of serving static content by use of 
commodity boxes running Apache is very low and, due to its stateless nature, 
very predictable.  

• In the second tier—the J2EE tier—the cost of hardware may be the same, 
but both the infrastructure software and the custom application logic are 
significantly more expensive.  
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• In the third tier—the database tier—the cost of the hardware and software is 
often significantly higher and the cost of scalability tends to grow 
exponentially.  

The result is predictable: Applications that tend to allow each request to get past 
the first or second tier will be much more expensive to scale, and applications that 
rely on data access from the database for each request will encounter severe limits 
on their scalable performance.  

The lesson learned is this: handle the incoming load in the earliest-possible tier, and 
do it with resources that have predictable scale-out behavior and costs. For most 
applications, those are the resources represented by commodity hardware—servers 
with fast CPUs and plenty of memory.  

Also, you should deliberately build an architecture that will bottleneck in the 
earliest-possible tier on either the CPU or in memory. Why? You’re going to have a 
bottleneck, whether you choose to or not. And if you don’t pick the bottleneck 
deliberately, it’s going to end up in the most expensive and difficult-to-scale part of 
your environment. 

Clustering for Scalability  
There are three distinct tiers in the previous example, and each has the ability to 
scale out. The term scaling out is used to explicitly contrast with the traditional 
approach to scaling, called scaling up—more commonly known as buying bigger 
boxes. Scaling out achieves scalability through the purchase of more boxes of the 
same type. Currently, brand-name commodity dual CPU servers are commonly 
available for less than US$2,000, with well-equipped, top-of-the-line versions 
costing less than US$4,000. Based on these prices, it is possible to achieve the same 
number of millions of instructions per second (MIPS) as a certain server that has 
more than 70 CPUs for less than US$50,000 by using commodity servers—a 
savings of almost US$3.5 million, or 98.5 percent. 

The term scaling out is used to explicitly 
contrast with the traditional approach to 

scaling, called scaling up—more 
commonly known as buying bigger boxes. 

The amount of compute power that can be inexpensively assembled by use of 
commodity hardware is staggering. However, the compute power is worthless 
without the means to address the actual problems at hand.  

For the first tier—the Web tier, which consists of a farm of Web servers—
commodity servers can be incredibly effective. Each of these servers is typically 
responsible for managing client connections, parsing HTTP headers for sticky load 
balancing information, and even handling secure sockets layer (SSL) encryption and 
decryption duties, which are very computationally expensive. Because each server 
has its own dedicated input/output subsystem and because the servers do not have 
to communicate among themselves to handle their load, they provide an extremely 
cost-effective solution that exhibits linear scalability for the Web tier.  

In the second tier, which is often an application server cluster, commodity servers 
can provide very good scalability for applications that are generally stateless. 
Exceptions to this are usually related to HTTP session management. Most 

Achieving the Impossible: Unlimited Application Scalability     Page 5 



application servers support sticky load balancing from the Web tier, which means 
that a particular HTTP session can be managed locally by one machine as well as 
having options for HTTP session failover and migration on demand —which can 
be necessary when the sticky load balancing doesn’t stick. 

Because the database tier is responsible for managing application data in a fully 
resilient manner, it also presents the most complications for implementing a scale-
out architecture—a topic that is well beyond the scope of this paper. Suffice it to 
say that advances in products such as Oracle Real Application Clusters (Oracle 
RAC) are making it possible to implement a scale-out architecture for the database 
tier.  

All three of these scale-out architectures are loosely referred to as clustering, 
although they differ significantly. In the case of the Web tier, no server-to-server 
communication is even necessary, whereas at the other extreme, the database tier 
must manage transactional consistency across its cluster. 

This white paper focuses on the application tier. Because that tier is responsible for 
the bulk of the application logic, it tends to be responsible for the dynamic nature 
of the application, the page generation, the user session state, and many 
responsibilities that unfortunately cannot be pushed forward into the Web tier. 
Further, if the application tier allows its operations to become requests back to the 
database tier, the impact on scalability will be devastating. As such, solving large-
scale data access requirements in the application tier without delegating the entire 
load to the database server is a key step toward achieving scalable performance.  

CLUSTERED CACHING  
Clustered caching refers to the ability to maintain data in the application tier in such 
a way that the application can fulfill some portion of its data access requirements 
from the cache. This mitigates the application’s load on the database without 
violating the application’s requirements for data correctness if that data is being 
changed. 

Clustered caching refers to the ability to 
maintain data in the application tier in 

such a way that the application can fulfill 
some portion of its data access 

requirements from the cache. 

Traditional caching is based on two fundamental concepts: The first reflects a 
limitation on the size of the cache, because the cache must be prevented from 
growing so much that it negatively affects the application that is maintaining it (for 
example, by causing the application to run out of memory). The second involves 
the application’s degree of tolerance for out-of-date (stale) data. The risk of stale 
data arises as soon as an application chooses to hold onto data instead of relying on 
the system of record for the data. When an application reads from a traditional 
cache, it is accepting that the data might be stale. By discarding data from the cache 
once it has been cached for a certain period of time, the cache expires potentially 
stale data. In other words, the application is assured that its cache will not provide 
data that is stale for a period longer than what is specified by its cache expiry 
setting. 
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Even in a clustered environment, this simple traditional caching approach can be 
very effective for frequently requested data when the application can accept a 
certain amount of staleness.  

For distributed systems, an extension to the traditional caching approach is for a 
server to notify other interested servers when that server has modified a particular 
piece of data. This reduces the likelihood of the cache’s containing stale data in an 
environment where multiple servers have a copy of that data in their own cache, 
because those servers will evict stale data from the cache as soon as they are 
notified that it has been changed. Again, this traditional distributed caching 
approach can be very effective.  

Coherent clustered caching is the ability of servers within the cluster to know that 
the data in the cache is up-to-date, and provides the application with the means to 
totally eliminate the possibility of cache staleness when necessary without 
transferring additional load to the database. Coherent clustered caching implies the 
ability to synchronize on the cache, or elements within the cache, in much the same 
way that application logic can synchronize on an object to guarantee a thread-safe 
implementation. Furthermore, some caches provide transactional semantics, 
enabling an application to modify the caches and accept or reject all the changes to 
the cache in a manner that maintains transactional consistency.  

Coherent clustered caching is the ability of 
servers within the cluster to know that the 

data in the cache is up-to-date. 

Implementations of traditional caching and distributed cache invalidations are 
common and well understood; the concept of maintaining cache coherency in a 
cluster is much more novel and much less understood. Because it can eliminate the 
potential for stale data and the resulting concerns, however, application architects 
much more readily embrace coherent clustered caching as an acceptable caching 
solution for scale-out application environments. 

CACHE REPLICATION  
The best-known form of coherent clustered caching is the fully replicated cache. 
Replication itself is not responsible for synchronous coherency, because it would 
conceivably have the same small communication time windows that would allow 
for staleness. Rather, it is the ability to achieve guaranteed coherency by 
synchronizing against the cache or its constituent data or by modifying the cache 
within a transaction.  

Unlike invalidation, which throws away the data the application is using, cache 
replication keeps the data as it has been modified and shares that modification with 
the other members of the cluster. As such, it is a “push” model, because it pushes 
new data to the other servers in the cluster as soon as the data is available.  

The purpose of a replicated cache is quite obvious. If each server maintains a local 
copy of cached data, then the application logic running on each server can access 
local data without the need to communicate with any other servers. As a result, data 
access has no measurable latency.  Figure 1 illustrates this purpose: 
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Figure 1: Four application servers accessing data from a replicated cache 

Just as the purpose of a replicated cache is obvious, the limitations are equally 
obvious. First, maintaining the cache across the cluster when a change occurs 
implies the need to communicate to the rest of the entire cluster. Such 
communication—often accomplished by use of group network protocols—cannot 
by its nature scale linearly. Second, the cache is severely limited in its in-memory 
size, because each application server is maintaining the entire cache within its 
process space.  

CACHE PARTITIONING  
To solve the limitations of a replicated cache model without sacrificing either the 
high-availability (HA) benefits of redundancy or the coherency guarantees provided 
by the clustered cache, Oracle invented the concept of a shared-nothing cache 
architecture, called partitioned caching, shown in Figure 2. 

Figure 2: The same application accessing the same data from a partitioned cache  
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With the data partitioned, the cache capacity grows linearly with the size of the 
cluster, as does the processing capacity available for managing the cache. Further, in 
a shared-nothing architecture, each piece of data in the cache has exactly one owner 
within the cluster who is responsible for managing that data. (In Figure 2, this is 
designated as the “Primary”; the “Backup” is a synchronous copy maintained solely 
for failover purposes.) All network communication can be point-to-point in a 
partitioned model, allowing the cache throughput to scale linearly on a switched 
network.  

NEAR CACHING  
Partitioned caching introduces two fundamental latency issues: One is the obvious 
network time involved in obtaining the necessary data from the server that owns it. 
The other is a process known as deserialization that must occur to turn the raw 
binary data back into an object. This process tends to contribute more to latency 
than the network time.  

Partitioned caching introduces two 
fundamental latency issues: One is the 

obvious network time involved in 
obtaining the necessary data from the 

server that owns it. The other is a process 
known as deserialization that must occur 

to turn the raw binary data back into an 
object. This process tends to contribute 

more to latency than the network time. 

To resolve both of these latency issues, a near cache is used to “cache the cache.” 
Once the network time and deserialization are complete, a copy of the resulting 
object is managed locally to avoid the need to repeatedly obtain it across the 
network and deserialize it.  

Figure 3 illustrates this and shows how the partitioned cache can be used as an 
entirely out-of-process cache by the application. The application is able to obtain 
the data from the partitioned cache running on cache servers (the lower two servers), 
whereas the application servers use a near cache to eliminate the associated latency. 

 

Figure 3: Same application, same data, with a near cache of a partitioned cache  

Figure 3 also shows an invalidation pattern being used to keep the near caches in 
sync, as illustrated by the invalidation-based eviction’s occurring in the first server.  
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CACHE-THROUGH ARCHITECTURES  
Cache-aside is a common approach to caching in which the application is responsible 
for obtaining the data from the datasource if the desired data is not in the cache. 
And having obtained the data from the datasource, the application will place the 
data into the cache so that subsequent accesses for the same data can benefit from 
the cache. This approach is often used to add caching to an existing application and 
involves adding a cache access immediately before the datasource access, by 
conditionally short-circuiting the datasource access if there is a cache hit and by 
adding a cache update after the datasource access.  

Cache-through places the cache between the client of the datasource and the 
datasource itself, requiring access to the datasource to go through the cache. When 
the application needs data that could be cached, it simply requests that data from 
the cache and the cache, in turn, returns the requested data. The process that 
occurs within the cache to provide the data is conceptually similar to that of the 
cache-aside model, except that the responsibility for accessing the datasource has 
now been pushed down to the level of the cache itself. The cache accomplishes this 
by delegating the responsibility for the actual data access to a Cache Loader 
implementation (see Figure 4). 

Cache-through places the cache between 
the client of the datasource and the 

datasource itself, requiring access to the 
datasource to go through the cache. When 

the application needs data that could be 
cached, it simply requests that data from 
the cache and the cache, in turn, returns 

the requested data. 

Figure 4: Same application, same data, using read-through/write-through  

The partitioned approach guarantees an owner for each piece of data in the 
clustered cache, so if the application requests a piece of data that has not yet been 
loaded (or that has been evicted), the cache can load that data by using a cache 
loader. Because the partitioned approach has the ability to serialize access to a 
particular cache element, it can handle numerous concurrent requests for the same 
data with a single load, which helps significantly reduce the load on the underlying 
database.  

REFRESH-AHEAD AND WRITE-BEHIND OPTIMIZATIONS  
Refresh-ahead caching is used to preload data that is soon to expire from the cache. 
The latency of the corresponding database operation is then eliminated from the 
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user experience, because the refresh can complete before the data expires. 
Although refresh-ahead caching may not itself reduce load on the database, it will 
improve the experience of end users, by making sure the data the end users will be 
using will be waiting for them, in the cache and up-to-date.  

Using write-behind caching is another way to eliminate latency. Unlike the write-
through architecture, which makes sure the database accepts the data before 
committing the same data into the cache, the write-behind architecture writes it 
directly into the cache and triggers an asynchronous—and potentially deferred—
write to the database. With asynchronous writes, the latencies of database updates 
are eliminated from the end-user experience (see Figure 5). 

Figure 5: Same application, same data, using write-behind caching 

Furthermore, if multiple changes are made to the same cached data while it is in the 
write-deferred period of time, only the most recent data will be written back to the 
database when the write-behind caching actually occurs. The result can be 
dramatically decreased load on the database, meaning much better responsiveness 
for database transactions that must be performed synchronously.  

IMPLICATIONS FOR WEB SERVICES AND SERVICE-ORIENTED 
ARCHITECTURES  
Service-oriented architectures (SOAs) and Web services in general exhibit the same 
requirements for scalable performance as any other line-of-business or outward-
facing application. Much as advanced Web applications manage HTTP sessions to 
provide conversational states on the server, Web services often have to implement 
stateful conversations. In fact, they are sometimes implemented by use of HTTP 
sessions. On a request-by-request basis, the data access requirements for Web 
services appear to be significantly higher than for Web applications, due to the 
nature of Web services, in which ancillary data is often included in a response to 
eliminate the need for subsequent requests. In some cases, the request volumes are 
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also significantly higher and growing at a much higher rate, largely because the 
“clients” are no longer humans impeded by considerations such as “think time.”  

For these reasons and more, the adoption of clustered caching for Web services 
architectures is occurring both sooner in the technology cycle and at a significantly 
greater rate than that observed with Web applications. 

CONCLUSION 
As this white paper has demonstrated, clustered caching is a proven approach that 
can provide applications with significantly higher throughput and lower latency for 
data operations while retaining the appropriate levels of data quality that the 
applications require. The result can be greatly improved scalability. 
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